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J. Phys. A: Math. Gen. 16 (1983) L467-LA70. Printed in Great Britain 

LE’ITER TO THE EDITOR 

Fine and hyperfine structure parameters in a space of 
constant curvature 

N Bessis and G Bessis 
Laboratoire de Spectroscopie theorique, Universit6 Claude Bernard, Lyon I, 69622 
Villeurbanne, France 

Received 4 June 1983 

Abstract. Analytical expressions of the atomic fine and hyperfine structure parameters 
in a space of constant curvature have been obtained by use of a ladder operator technique. 
It is found that the additional curvature contributions to the classical (Rat) expressions 
increase with n. 

In previous studies of atomic fine and hyperfine structure in a space of constant 
curvature, we have encountered integrals involving the ‘pseudo-radial’ part of the 
hydrogenic functions in a spherical three-space (Bessis and Bessis 1979, Bessis et a1 
1982, 1983; to be referred to as I, I1 and 111, respectively). Indeed, the fine structure 
(Land6 aL and spin curvature ~ S C )  and hyperfine structure (magnetic orbital, 
dipole-dipole and electric quadrupolar) parameters involve, respectively, the following 
integrals: 

(YQ = 

where Inl) = (sin x)-’9?&) is the ‘curved orbital’, i.e. the eigenfunction of the hydro- 
genic Schrodinger equation in a space of constant positive curvature. In that space, 
the line and volume elements are 

ds2=R2dX2+R2sin2X (d02+sin26dI,b2), (2) 
where 8 and I,b lie within their traditional bounds 0 s 0 S 7r and 0 s JI s 27r. 

Although ,y is an angular variable (OSX ST), it can be related asymptotically to 
the ‘flat’ radial variable r ( O S  r <CO). Indeed, at the asymptotic flat limit, as the 
curvature 1/R vanishes and x + 0 such that RX = r remains finite, one finds again the 
ordinary (flat) results. In particular, the fine aL and hyperfine structure parameters 
( Y I ,  (Yd and aQ converge towards the (r-’)  parameter while the spin curvature parameter 
aSC vanishes. The 9?,,,(,y) functions are square integrable solutions of the eigenequation 

d7 = R’ sin2 x sin 6 dx d0 d4, 

(2-- d2 
‘)+2ZR cot x + ~ , ) W , , ~ j y )  = 0. (3) 
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They have been obtained in paper I. 

anr(,y) =Nnl(sin x)"  exp(-ZRX/n )PY'(-i cot x )  (4) 

where NnI is the normalisation constant, P?,') is a Jacobi polynomial of degree 
U = n - 1 - 1 with a = -n - iZR/n and /3 = -n + iZR/n ; in spite of the presence of the 
imaginary quantities, it is a real polynomial in cot x. 

To our knowledge, integrals involving these functions are not yet available and 
their direct calculation, by termwise integration, leads to rather cumbersome 
expressions: only approximate expressions of aL and cysc for the particular case 
1 = n - 1 and I = n - 2 have been derived in 11. 

In the present paper, a novel procedure of computation is proposed which leads 
to closed form expressions of the integrals (1) in terms of the n and I quantum numbers. 

As pointed out in I, the eigenequation (3) is, within the Infeld and Hull (1951) 
classification, a type E (class I) factorisable equation. Therefore, the BnI(,y) functions 
are solutions of the following pair of difference differential equations: 

%$'gn/-l = ( A n  -L(I))1'29?,,r, = -L(l))1'2anl-1, ( 5 )  

where the associated ladder operators %?, factorisation function L(1) and eigenvalue 
An are 

2t'f = I cot x -ZR/l  T-dldx, L ( I ) =  12-Z2R2/12, A, = n 2 - Z 2 R 2 / n 2 .  (6) 

The present procedure takes advantage of equations ( 5 )  and (6) in the following way. 
Using the expressions of the ladder operators, one can write 

(7a ) 

CotX =ZR/(I-1)2+[2(1- l)]-l(XT-i +Xr-1). (76) 
Then, using equations ( 5 )  together with the mutual adjointness property of ,XT and 
XF, one gets alternative expressions for the same matrix element involving any 
derivable function F k ) :  

cot x = ZR/12 + (21)-'(%; +X;) 
and/or 

(n l -  1IF cot xlnl-  1) 

Z R  1 
=-(nl- 1IF)nf - 1)-- 

l 2  21 

Z R  1 
= y ( n 1  - 1 [Flnl- 1) + - 

(1 - 1) 2(1- 1) 
(n I - 1 1 nl - I) 

where A n ( / )  = [ A n  -L( l ) ]1 '2 .  
First, setting F = 1 in (8), one gets 

Z R  A,( l -1)  =- 2 + r i n l -  2)n l -  1). 
(1 - 1) (9) 
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Therefore, this matrix element (9) must be independent of f and, since A , ( n )  = 0, it 
is equal to Z R / ~  ’. One gets, for any value of I, 

(nflcot xlnf) =ZR/n’. (10) 

Setting in (8) F = cot x, F cot x = (sin’x)-’ - 1 and using ( lo) ,  one gets after some 
rearrangements 

(t- 1/2)(nf - Il(sin’x)-’lnf - 1) 

= f +Z’R’/n’f +A,,(f)(nf - llcot xlnf) 

= (I - 1) +Z2R2/n2(f  - 1) +A,([ - l)(d -2lc0t xlnf - 1). (11) 

Using the same arguments as above, it follows that both right-hand sides of (11) are 
equal to n + Z 2 R 2 / n 3  and one gets 

(nfI(sin2X)-’ln~)=Z2R2/(f+ 1 /2 )n3+n / ( i+  1/2). (12) 

Setting F = l/sin’ x in (8), one gets 

f ( f  - l)(nf - l l ( cos~) / s in~x ln f  - l)-ZR(nf - ll(sin2X)-’lnf - 1) 

= fA,(I)(nf - ll(sin’x)-’Inf) 

= (1 - l)A,(f - l)(nf -21(sin2x)-’lnf - 1). (13) 

Therefore, the combination (13) is independent of f and equal to zero. Using (12), 
one gets 

n 4  1+- 
Z 3 R  

n3f(f + 1)(f + 1/2)( Z’R’). 
(nfl(cos x)/sin3 x l n ~ )  = 

Now keeping in mind that, in the analysis of curvature effects, one is mainly 
interested in the predominant 1/R2 contributions, the asymptotic procedure described 
below is sufficient to yield the exact contribution required for the calculation (up to 
1 /R2)  of the remaining integrals which are needed to derive analytical expressions 
of the parameters (1). 

Let us note that, at the asymptotic flat limit, i.e. as R + 00, x + 0 such that xR = r, 
the curved hydrogenic function 9i!nl(,y) converges to the classical one Rnl(r )  and 
therefore the integral ( n f  l(2R tan ix)k Inf) converges towards the flat hydrogenic 
integral ( r k ) .  Then, after expanding the function in powers of 2R tan ix, one finds an 
approximate expression for the associated integral. In that way, one notes that 

(1 - cos x )/ R ’ sin’ x = $I? -’ + & -4( 2R tan ix )’ 
and one finds 

(nfI(1 - c o s ~ ) / R *  sin’XInf)= (2R2).-’ +O(l /R4) .  (15) 
Similarly, one notes that 

1 - C O S X  1 1 1 
R 3  sin3 = jjp( (2R tan :)-’ +s( 2R tan :) + =( 2R tan 

and, since ( r - l )  = Z/n  2 ,  one finds 

(nfl(1 -cos x ) / R 3  sin3 xlnf) = (2R2)-’Z/n2+0(1/R4).  (16) 
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Finally, collecting the above results ( lo) ,  (12), (14), (15) and (16), one obtains the 
following expressions for the parameters (1): 

a = &,{ 1 + n [4n + 1 ( I  + 1)(21+ 1)]/4Z 2R + O( 1 / R  ‘)}, 

asc= 1/2R2, 

af = a d = a Q = & f [ 1 + n 4 / Z 2 R 2 + 0 ( 1 / R 4 ) 1 ,  

where tflr = ( r - 3 )  =Z3/n31(1 + 1)(1+ 1/2) is the well knowii flat limit expression of the 
parameters. 

Although the hyperfine parameters show differentiated expressions (see equation 
( l ) ) ,  nevertheless it follows from (17) that the 1 / R 2  contributions to those parameters 
are identical. As previously conjectured, the curvature effects increase with n .  

Let us mention that the above procedure also provides, as a byproduct, off-diagonal 
(in 1) matrix elements. For instance, following from equation (1 l ) ,  one gets 

Af l ( l ) (n l  - llcot ,y Inl) = n - I + Z 2 R 2 / n  - Z 2 R 2 / n  21, 

i.e. 
ZR -[ 112 ,,212 -1 /2  

(n1-  llcot xlnl )  = - T (  n -) n + l  ( 1+-) Z 2 R 2  (1-*) Z 2 R 2  ‘ (18) 

Anticipating further investigation concerning atomic structure in the framework 
of a ‘Dirac curved model’, this procedure proves to be particularly valuable. Indeed, 
the two components of the ‘curved Dirac’ orbitals could be obtainable as a linear 
combination of curved generalised Kepler functions. In that case, since the quantum 
numbers are non integer, the calculation cannot be easily performed by a brute 
termwise integration. 

This procedure, which has been suggested to us after reading a note of Lin (1941) 
concerning the normalisation of Dirac functions, can be applied to the calculation of 
matrix elements of Hermitian operators as long as the kets are solutions of a factorisable 
equation. 
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