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LETTER TO THE EDITOR

Fine and hyperfine structure parameters in a space of
constant curvature

N Bessis and G Bessis

Laboratoire de Spectroscopie théorique, Université Claude Bernard, Lyon I, 69622
Villeurbanne, France

Received 4 June 1983

Abstract. Analytical expressions of the atomic fine and hyperfine structure parameters
in a space of constant curvature have been obtained by use of a ladder operator technique.
It is found that the additional curvature contributions to the classical (flat) expressions
increase with n.

In previous studies of atomic fine and hyperfine structure in a space of constant
curvature, we have encountered integrals involving the ‘pseudo-radial’ part of the
hydrogenic functions in a spherical three-space (Bessis and Bessis 1979, Bessis et al
1982, 1983; to be referred to as I, IT and III, respectively). Indeed, the fine structure
(Landé «; and spin curvature asc) and hyperfine structure (magnetic orbital,
dipole—dipole and electric quadrupolar) parameters involve, respectively, the following

integrals:
_ 1 _ 1-cos y >
“L'<"l R3sin’ x "l>’ “S°'<"’ R7sin ")
_ cos x > =< 3—(1-cos x)(2+cos x) >
o <an3sin3x "/ ag={nl 3R>sin’ x ), L

aqQ = oy,

where |nl) = (sin x) 'R (x) is the ‘curved orbital’, i.e. the eigenfunction of the hydro-
genic Schrodinger equation in a space of constant positive curvature. In that space,
the line and volume elements are

ds?=R*dy>+R?%sin® y (d6%+sin’ § dy?), dr=R%sin’ ysin8dy dédy, (2)

where 6 and ¢ lie within their traditional bounds 0< @ <7 and Oy <27
Although x is an angular variable (0 =<y <), it can be related asymptotically to
the ‘flat’ radial variable r (0=<r<o0). Indeed, at the asymptotic flat limit, as the
curvature 1/R vanishes and y -0 such that Ry =r remains finite, one finds again the
ordinary (flat) results. In particular, the fine ar and hyperfine structure parameters
ay, ag and aq converge towards the (r~>) parameter while the spin curvature parameter
asc vanishes. The &,,(x) functions are square integrable solutions of the eigenequation
( d> 1+1)

Ex—z i’ X +2ZR cot x +:\n) Rux)=0. 3
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They have been obtained in paper I.
Ront(x) = Nui(sin x)" exp(~ZRx/n)P* (=i cot x) 4)

where N, is the normalisation constant, Py®’ is a Jacobi polynomial of degree
v=n-1—-1witha=-n—-iZR/n and B = —n +iZR/n; in spite of the presence of the
imaginary quantities, it is a real polynomial in cot x.

To our knowledge, integrals involving these functions are not yet available and
their direct calculation, by termwise integration, leads to rather cumbersome
expressions: only approximate expressions of a; and asc for the particular case
l=n—1and [l =n -2 have been derived in IL

In the present paper, a novel procedure of computation is proposed which leads
to closed form expressions of the integrals (1) in terms of the n and / quantum numbers.

As pointed out in I, the eigenequation (3) is, within the Infeld and Hull (1951)
classification, a type E (class I) factorisable equation. Therefore, the R,.;(x) functions
are solutions of the following pair of difference differential equations:

H Ronr—1 = (An — L)) R, KR =An— L) * Ry 1, (5)

where the associated ladder operators ¥, factorisation function L(/) and eigenvalue
A, are

#Hi =1coty—ZR/IFd/dy, LH)=1*-Z?R*/1?, An=n>—Z?R?*/n (6)

The present procedure takes advantage of equations (5) and (6) in the following way.
Using the expressions of the ladder operators, one can write

coty =ZR/I*+ QD) (KT +#7) (7a)
and/or
coty =ZR/(I -1 +[2(1 - 1)1 (¥ +Hi-1). (76)

Then, using equations (5) together with the mutual adjointness property of ¥; and
#:, one gets alternative expressions for the same matrix element involving any
derivable function F(x):

(nl —1|F cot x|nl —1)

_ZR . _ TSR _1) A
72 (nl —1|F|ni ~1) 21<nl 1'd ‘l > ; —(nl - 1|F|nl)
ZR 1
-+ )
(l_-l_)2<nl |F|nl 1)+2(l nl ldx nl-1
Al -
—-—-—(nl—ZIFlnl -1 8)
where A, (1) =[A, —L(I)]"">
First, setting F = 1 in (8), one gets
(nl—llcotxlnl—l)— 2 +—Q( I[-1|nl)
__ZR A.(-1),
—(1_1)2+ -1 {nl =2|nl - 1). 9)
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Therefore, this matrix element (9) must be independent of [ and, since A,(n)=0, it
is equal to ZR/ n. One gets, for any value of /,

(nl|cot x|nl)=ZR/n*. (10)

Setting in (8) F =cot x, F cot xy = (sin x)"'~1 and using (10), one gets after some
rearrangements

(I=1/2)nl ~1)(sin® x) Ynl — 1)
=1+Z*R*/n* 1+ A, ()(nl — 1 cot x|nl)
=(-1)+Z*R*/n*(I- 1)+ A = 1){nl = 2|cot x|nl —1). (11)

Using the same arguments as above, it follows that both right-hand sides of (11) are
equal to n +Z*R?*/n> and one gets

(nl|(sin® x) nly = Z*R*/(+1/2n +n/(+1/2). (12)
Setting F = 1/sin’ y in (8), one gets
(I - 1)nl —1|(cos x)/sin® x|nl = 1) = ZR{nl — 1|(sin® x) '|nl = 1)
= 1A, ()}nl - 1|(sin® x) " '|nl)
= (I = DA = 1)¥nl =2|(sin® x) "} |nl — 1) (13)

Therefore, the combination (13) is independent of / and equal to zero. Using (12),
one gets

(nl|(cos x)/sin’ x|nl)y =

Z°R* ( nt ) (14)

+
i+ 1)(+1/2)\"  Z°R?
Now keeping in mind that, in the analysis of curvature effects, one is mainly
interested in the predominant 1/R? contributions, the asymptotic procedure described
below is sufficient to yield the exact contribution required for the calculation (up to

1/R?) of the remaining integrals which are needed to derive analytical expressions
of the parameters (1).

Let us note that, at the asymptotic flat limit, i.e. as R » o0, y - 0 such that yR =r,
the curved hydrogenic function &,(x) converges to the classical one R, (r) and
therefore the integral (n/|(2R tan 3x)*|n!) converges towards the flat hydrogenic
integral (r"). Then, after expanding the function in powers of 2R tan %x, one finds an
approximate expression for the associated integral. In that way, one notes that

(1—cos x)/R?sin® y =3R *+3R *(2R tan 3x)*
and one finds
(nl|(1=cos x)/R?sin* x|nl)= 2R*) '+ O(1/R%). (15)

Similarly, one notes that

R (( X)_‘ 1 ( X) 1 ( XY)
R?sin*y 2R? 2R any 2R? 2R ans ) 16R" 2R tan,

and, since (r ') = Z/n?, one finds

(nl)(1—cos x)/R>*sin® x|nl) = 2R*'Z/n*+ O(1/R™). (16)
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Finally, collecting the above results (10), (12), (14), (15) and (16), one obtains the
following expressions for the parameters (1):

ar =&l +n[dn +1(1 + D21+ 1)1/4Z*R*+O(1/R*)},
asc=1/2R?, (17)
ar=as=aq=¢u[l1+n*/Z*R*+0(1/RY)],

where &, =" =2Z3/n1(1 + 1)1 +1/2) is the well known flat limit expression of the
parameters.

Although the hyperfine parameters show differentiated expressions (see equation
(1)), nevertheless it follows from (17) that the 1/R?* contributions to those parameters
are identical. As previously conjectured, the curvature effects increase with n.

Let us mention that the above procedure also provides, as a byproduct, off-diagonal
(in /) matrix elements. For instance, following from equation (11), one gets

An(D)(nl = 1cot x|nl)=n —1+Z*R*/n*-Z*R?*/n?l,

ZR(n—-N"? nir\ "2 n’l

{nl = 1jeot x|nl) === (n +1) (1 +22R2) (1 Zsz)' (18)

Anticipating further investigation concerning atomic structure in the framework

of a ‘Dirac curved model’, this procedure proves to be particularly valuable. Indeed,

the two components of the ‘curved Dirac’ orbitals could be obtainable as a linear

combination of curved generalised Kepler functions. In that case, since the quantum

numbers are non integer, the calculation cannot be easily performed by a brute
termwise integration.

This procedure, which has been suggested to us after reading a note of Lin (1941)

concerning the normalisation of Dirac functions, can be applied to the calculation of

matrix elements of Hermitian operators as long as the kets are solutions of a factorisable
equation.
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