Fine and hyperfine structure parameters in a space of constant curvature

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1983 J. Phys. A: Math. Gen. 16 L467
(http://iopscience.iop.org/0305-4470/16/13/005)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 06:28

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Fine and hyperfine structure parameters in a space of constant curvature

N Bessis and G Bessis
Laboratoire de Spectroscopie théorique, Université Claude Bernard, Lyon I, 69622 Villeurbanne, France

Received 4 June 1983

Abstract

Analytical expressions of the atomic fine and hyperfine structure parameters in a space of constant curvature have been obtained by use of a ladder operator technique. It is found that the additional curvature contributions to the classical (flat) expressions increase with n.

In previous studies of atomic fine and hyperfine structure in a space of constant curvature, we have encountered integrals involving the 'pseudo-radial' part of the hydrogenic functions in a spherical three-space (Bessis and Bessis 1979, Bessis et al 1982, 1983; to be referred to as I, II and III, respectively). Indeed, the fine structure (Landé α_{L} and spin curvature α_{SC}) and hyperfine structure (magnetic orbital, dipole-dipole and electric quadrupolar) parameters involve, respectively, the following integrals:
$\alpha_{\mathrm{L}}=\langle n l| \frac{1}{R^{3} \sin ^{3} \chi}|n l\rangle, \quad \alpha_{\mathrm{SC}}=\langle n l| \frac{1-\cos \chi}{R^{2} \sin ^{2} \chi}|n l\rangle$,
$\alpha_{l}=\langle n l| \frac{\cos \chi}{R^{3} \sin ^{3} \chi}|n l\rangle, \quad \alpha_{\mathrm{d}}=\langle n l| \frac{3-(1-\cos \chi)(2+\cos \chi)}{3 R^{3} \sin ^{3} \chi}|n l\rangle$,
$\alpha_{\mathrm{Q}}=\alpha_{\mathrm{l}}$,
where $|n l\rangle=(\sin \chi)^{-1} \mathscr{R}_{n l}(\chi)$ is the 'curved orbital', i.e. the eigenfunction of the hydrogenic Schrödinger equation in a space of constant positive curvature. In that space, the line and volume elements are
$\mathrm{d} s^{2}=R^{2} \mathrm{~d} \chi^{2}+R^{2} \sin ^{2} \chi\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \psi^{2}\right), \quad \mathrm{d} \tau=R^{3} \sin ^{2} \chi \sin \theta \mathrm{~d} \chi \mathrm{~d} \theta \mathrm{~d} \psi$,
where θ and ψ lie within their traditional bounds $0 \leqslant \theta \leqslant \pi$ and $0 \leqslant \psi \leqslant 2 \pi$.
Although χ is an angular variable ($0 \leqslant \chi \leqslant \pi$), it can be related asymptotically to the 'flat' radial variable $r(0 \leqslant r<\infty)$. Indeed, at the asymptotic flat limit, as the curvature $1 / R$ vanishes and $\chi \rightarrow 0$ such that $R_{X}=r$ remains finite, one finds again the ordinary (fiat) results. In particular, the fine α_{L} and hyperfine structure parameters α_{l}, α_{d} and α_{Q} converge towards the $\left\langle r^{-3}\right\rangle$ parameter while the spin curvature parameter α_{SC} vanishes. The $\mathscr{R}_{n l}(\chi)$ functions are square integrable solutions of the eigenequation

$$
\begin{equation*}
\left(\frac{\mathrm{d}^{2}}{\mathrm{~d} \chi^{2}}-\frac{l(l+1)}{\sin ^{2} \chi}+2 Z R \cot \chi+\lambda_{n}\right) \mathscr{R}_{n l}(\chi)=0 . \tag{3}
\end{equation*}
$$

They have been obtained in paper I.

$$
\begin{equation*}
\mathscr{R}_{n l}(\chi)=\mathcal{N}_{n l}(\sin \chi)^{n} \exp (-Z R \chi / n) P_{v}^{(\alpha, \beta)}(-\mathrm{i} \cot \chi) \tag{4}
\end{equation*}
$$

where $\mathcal{N}_{n l}$ is the normalisation constant, $P_{v}^{(\alpha, \beta)}$ is a Jacobi polynomial of degree $v=n-l-1$ with $\alpha=-n-\mathrm{i} Z R / n$ and $\beta=-n+\mathrm{i} Z R / n$; in spite of the presence of the imaginary quantities, it is a real polynomial in cot χ.

To our knowledge, integrals involving these functions are not yet available and their direct calculation, by termwise integration, leads to rather cumbersome expressions: only approximate expressions of α_{L} and α_{SC} for the particular case $l=n-1$ and $l=n-2$ have been derived in II.

In the present paper, a novel procedure of computation is proposed which leads to closed form expressions of the integrals (1) in terms of the n and l quantum numbers.

As pointed out in I, the eigenequation (3) is, within the Infeld and Hull (1951) classification, a type E (class I) factorisable equation. Therefore, the $\mathscr{R}_{n i}(\chi)$ functions are solutions of the following pair of difference differential equations:

$$
\begin{equation*}
\mathscr{H}_{l}^{+} \mathscr{R}_{n l-1}=\left(\lambda_{n}-L(l)\right)^{1 / 2} \mathscr{R}_{n l}, \quad \mathscr{H}_{l}^{-\mathscr{R}_{n l}=\left(\lambda_{n}-L(l)\right)^{1 / 2} \mathscr{R}_{n l-1}, ., ~} \tag{5}
\end{equation*}
$$

where the associated ladder operators $\mathscr{H}_{l}^{ \pm}$, factorisation function $L(l)$ and eigenvalue λ_{n} are
$\mathscr{H}_{l}^{ \pm}=l \cot \chi-Z R / l \mp \mathrm{~d} / \mathrm{d} \chi, \quad L(l)=l^{2}-Z^{2} R^{2} / l^{2}, \quad \lambda_{n}=n^{2}-Z^{2} R^{2} / n^{2}$.
The present procedure takes advantage of equations (5) and (6) in the following way. Using the expressions of the ladder operators, one can write

$$
\begin{equation*}
\cot \chi=Z R / l^{2}+(2 l)^{-1}\left(\mathscr{H}_{l}^{+}+\mathscr{H}_{l}^{-}\right) \tag{7a}
\end{equation*}
$$

and/or

$$
\begin{equation*}
\cot \chi=Z R /(l-1)^{2}+[2(l-1)]^{-1}\left(\mathscr{H}_{l-1}^{+}+\mathscr{H}_{l-1}^{-}\right) . \tag{7b}
\end{equation*}
$$

Then, using equations (5) together with the mutual adjointness property of \mathscr{H}_{1}^{+}and \mathscr{H}_{l}^{-}, one gets alternative expressions for the same matrix element involving any derivable function $F(\chi)$:

$$
\begin{align*}
& \langle n l-1| F \cot \chi|n l-1\rangle \\
& \qquad \begin{aligned}
= & \frac{Z R}{l^{2}}(n l-1|F| n l-1\rangle-\frac{1}{2 l}\langle n l-1| \frac{\mathrm{d} F}{\mathrm{~d} \chi}|n l-1\rangle+\frac{\Lambda_{n}(l)}{l}\langle n l-1| F|n l\rangle \\
= & \frac{Z R}{(l-1)^{2}}(n l-1|F| n l-1\rangle+\frac{1}{2(l-1)}\langle n l-1| \frac{\mathrm{d} F}{\mathrm{~d} \chi}|n l-1\rangle \\
& \quad+\frac{\Lambda_{n}(l-1)}{l-1}(n l-2|F| n l-1\rangle
\end{aligned}
\end{align*}
$$

where $\Lambda_{n}(l)=\left[\lambda_{n}-L(l)\right]^{1 / 2}$.
First, setting $F=1$ in (8), one gets

$$
\begin{align*}
\langle n l-1| \cot \chi|n l-1\rangle & =\frac{Z R}{l^{2}}+\frac{\Lambda_{n}(l)}{l}\langle n l-1 \mid n l\rangle \\
& =\frac{Z R}{(l-1)^{2}}+\frac{\Lambda_{n}(l-1)}{l-1}\langle n l-2 \mid n l-1\rangle . \tag{9}
\end{align*}
$$

Therefore, this matrix element (9) must be independent of l and, since $\Lambda_{n}(n)=0$, it is equal to $Z R / n^{2}$. One gets, for any value of l,

$$
\begin{equation*}
\langle n l| \cot \chi|n l\rangle=Z R / n^{2} \tag{10}
\end{equation*}
$$

Setting in (8) $F=\cot \chi, F \cot \chi=\left(\sin ^{2} \chi\right)^{-1}-1$ and using (10), one gets after some rearrangements

$$
\begin{align*}
(l-1 / 2)\langle n l & \left.-1\left|\left(\sin ^{2} \chi\right)^{-1}\right| n l-1\right\rangle \\
& =l+Z^{2} R^{2} / n^{2} l+\Lambda_{n}(l)\langle n l-1| \cot \chi|n l\rangle \\
& =(l-1)+Z^{2} R^{2} / n^{2}(l-1)+\Lambda_{n}(l-1)\langle n l-2| \cot \chi|n l-1\rangle \tag{11}
\end{align*}
$$

Using the same arguments as above, it follows that both right-hand sides of (11) are equal to $n+Z^{2} R^{2} / n^{3}$ and one gets

$$
\begin{equation*}
\langle n l|\left(\sin ^{2} \chi\right)^{-1}|n l\rangle=Z^{2} R^{2} /(l+1 / 2) n^{3}+n /(l+1 / 2) \tag{12}
\end{equation*}
$$

Setting $F=1 / \sin ^{2} \chi$ in (8), one gets

$$
\begin{align*}
& l(l-1)\langle n l-1|(\cos \chi) / \sin ^{3} \chi|n l-1\rangle-Z R\langle n l-1|\left(\sin ^{2} \chi\right)^{-1}|n l-1\rangle \\
&=\mid \Lambda_{n}(l)\langle n l-1|\left(\sin ^{2} \chi\right)^{-1}|n l\rangle \\
&=(l-1) \Lambda_{n}(l-1)\langle n l-2|\left(\sin ^{2} \chi\right)^{-1}|n l-1\rangle . \tag{13}
\end{align*}
$$

Therefore, the combination (13) is independent of l and equal to zero. Using (12), one gets

$$
\begin{equation*}
\langle n l|(\cos \chi) / \sin ^{3} \chi|n l\rangle=\frac{Z^{3} R^{3}}{n^{3} l(l+1)(l+1 / 2)}\left(1+\frac{n^{4}}{Z^{2} R^{2}}\right) . \tag{14}
\end{equation*}
$$

Now keeping in mind that, in the analysis of curvature effects, one is mainly interested in the predominant $1 / R^{2}$ contributions, the asymptotic procedure described below is sufficient to yield the exact contribution required for the calculation (up to $1 / R^{2}$) of the remaining integrals which are needed to derive analytical expressions of the parameters (1).

Let us note that, at the asymptotic flat limit, i.e. as $R \rightarrow \infty, \chi \rightarrow 0$ such that $\chi R=r$, the curved hydrogenic function $\mathscr{R}_{n l}(\chi)$ converges to the classical one $R_{n l}(r)$ and therefore the integral $\langle n l|\left(2 R \tan \frac{1}{2} X\right)^{k}|n l\rangle$ converges towards the flat hydrogenic integral $\left\langle r^{k}\right\rangle$. Then, after expanding the function in powers of $2 R \tan \frac{1}{2} \chi$, one finds an approximate expression for the associated integral. In that way, one notes that

$$
(1-\cos \chi) / R^{2} \sin ^{2} \chi=\frac{1}{2} R^{-2}+\frac{1}{8} R^{-4}\left(2 R \tan \frac{1}{2} \chi\right)^{2}
$$

and one finds

$$
\begin{equation*}
\langle n l|(1-\cos \chi) / R^{2} \sin ^{2} \chi|n l\rangle=\left(2 R^{2}\right)^{-1}+\mathrm{O}\left(1 / R^{4}\right) \tag{15}
\end{equation*}
$$

Similarly, one notes that

$$
\frac{1-\cos \chi}{R^{3} \sin ^{3} \chi}=\frac{1}{2 R^{2}}\left(\left(2 R \tan \frac{\chi}{2}\right)^{-1}+\frac{1}{2 R^{2}}\left(2 R \tan \frac{\chi}{2}\right)+\frac{1}{16 R^{4}}\left(2 R \tan \frac{\chi}{2}\right)^{3}\right)
$$

and, since $\left\langle r^{-1}\right\rangle=Z / n^{2}$, one finds

$$
\begin{equation*}
\langle n l|(1-\cos \chi) / R^{3} \sin ^{3} \chi|n l\rangle=\left(2 R^{2}\right)^{-1} Z / n^{2}+\mathrm{O}\left(1 / R^{4}\right) \tag{16}
\end{equation*}
$$

Finally, collecting the above results (10), (12), (14), (15) and (16), one obtains the following expressions for the parameters (1):

$$
\begin{align*}
& \alpha_{\mathrm{L}}=\xi_{n l}\left\{1+n\left[4 n^{3}+l(l+1)(2 l+1)\right] / 4 Z^{2} R^{2}+\mathrm{O}\left(1 / R^{4}\right)\right\}, \\
& \alpha_{\mathrm{SC}}=1 / 2 R^{2}, \tag{17}\\
& \alpha_{l}=\alpha_{\mathrm{d}}=\alpha_{\mathrm{Q}}=\xi_{n l}\left[1+n^{4} / Z^{2} R^{2}+\mathrm{O}\left(1 / R^{4}\right)\right],
\end{align*}
$$

where $\xi_{n l}=\left\langle r^{-3}\right\rangle=Z^{3} / n^{3} l(l+1)(l+1 / 2)$ is the well known flat limit expression of the parameters.

Although the hyperfine parameters show differentiated expressions (see equation (1)), nevertheless it follows from (17) that the $1 / R^{2}$ contributions to those parameters are identical. As previously conjectured, the curvature effects increase with n.

Let us mention that the above procedure also provides, as a byproduct, off-diagonal (in l) matrix elements. For instance, following from equation (11), one gets

$$
\Lambda_{n}(l)\langle n l-1| \cot \chi|n l\rangle=n-l+Z^{2} R^{2} / n^{3}-Z^{2} R^{2} / n^{2} l,
$$

i.e.

$$
\begin{equation*}
\langle n l-1| \cot \chi|n l\rangle=-\frac{Z R}{n^{2}}\left(\frac{n-l}{n+l}\right)^{1 / 2}\left(1+\frac{n^{2} l^{2}}{Z^{2} R^{2}}\right)^{-1 / 2}\left(1-\frac{n^{3} l}{Z^{2} R^{2}}\right) . \tag{18}
\end{equation*}
$$

Anticipating further investigation concerning atomic structure in the framework of a 'Dirac curved model', this procedure proves to be particularly valuable. Indeed, the two components of the 'curved Dirac' orbitals could be obtainable as a linear combination of curved generalised Kepler functions. In that case, since the quantum numbers are non integer, the calculation cannot be easily performed by a brute termwise integration.

This procedure, which has been suggested to us after reading a note of Lin (1941) concerning the normalisation of Dirac functions, can be applied to the calculation of matrix elements of Hermitian operators as long as the kets are solutions of a factorisable equation.

References

